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Introduction

B/L nucleotides were independently developed by two research 
groups: Obika and Imanishi et al. at Osaka University and 
Wengel et al. at the University of Southern Denmark, and these 
were reported almost simultaneously in the late 1990s.1-3 The 
nucleotide analogs are widely recognized as LNA, a term coined 
by the latter group, but are identical to the 2',4'-BNA named by 
the former group. 2',4'-BNA/LNA exhibits high nuclease resis-
tance and low cytotoxicity in addition to excellent hybridization 
properties so that it forms a very stable complex with complemen-
tary oligonucleotides and has been a promising candidate as a 
material for nucleic acid drugs, such as antisenses, antigenes, siR-
NAs, and miRNAs.4 Such molecules targeting DNA and RNA 
can be created by rational molecular design based on known 
base-pair modes. In contrast, nucleic acid aptamers cannot be 
rationally designed, although they can target non-nucleic acids 
such as metabolites, proteins, cells, and viruses.5-8 Therefore, 
selection methods such as SELEX, using a random library, are 
thus far the only way to acquire them.

Although various improved SELEX methods have been devel-
oped to date,9 they all include a step to amplify active species 
that can bind to the target using polymerase. This enzymatic step 
proceeds smoothly when a natural DNA or RNA library is used, 
but it could become a bottleneck when a modified nucleic acid 
library is used. This is because the low yield and low accuracy 
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Recently, we achieved the first in vitro selection of 2'-O,4'-
C-methylene bridged/locked nucleic acid (2',4'-BNA/LNA) 
aptamers. High-affinity thrombin-binding aptamers (TBAs) 
were obtained from DNA-based libraries containing 2'-O,4'-
C-methylene-bridged/linked bicyclic ribonucleotides (B/L 
nucleotides) in the 5'-primer region, using the method of 
capillary electrophoresis systematic evolution of ligands by 
exponential enrichment (CE-SELEX). Furthermore, a similar 
selection protocol could provide TBAs that contain B/L 
nucleotides in both primer and random regions. We review 
technical challenges involved in the generation of various BNA 
libraries using analogs of B/L nucleoside-5'-triphosphate and 
polymerase variants and also discuss applications of these 
libraries to the selection of BNA (LNA) aptamers, as well as 
future prospects for their therapeutic and diagnostic uses.
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involved in the enzymatic synthesis of modified nucleic acids 
generally make enrichment of active species very difficult dur-
ing selection rounds. Therefore, great efforts have been made 
to create BNA aptamers. Earlier, use of post-SELEX modifica-
tion methods were mainly reported in studies on BNA aptamer 
development.10-25 However, in recent years, in vitro selection of 
BNA aptamers is preferred owing to the discovery of polymer-
ases available for BNA-containing oligonucleotide syntheses and 
genetic engineering of these polymerases. Last year, Pinheiro et 
al. developed Tgo DNA polymerase variants,26 which enable tran-
scription and reverse transcription of six different XNAs (xeno-
nucleic acids): HNA (1,5-anhydrohexitol nucleic acid), CeNA 
(cyclohexenyl nucleic acid), ANA (arabinonucleic acid), FANA 
(2'-fluoroarabinonucleic acid), TNA (α-L-threofuranosyl nucleic 
acid), and 2',4'-BNA/LNA (Fig. 1). Furthermore, they success-
fully obtained HNA aptamers by a conventional SELEX method. 
However, 2',4'-BNA/LNA aptamers were not reported, implying 
that it would be inefficient to recover 2',4'-BNA/LNA aptamers 
from a 2',4'-BNA/LNA library only by improvement of polymer-
ases. Thus, no reports exist on generation of LNA aptamers by in 
vitro selection, as Wengel et al. mentioned in their Review article 
published in December, 2012.27

BNA Development for Therapeutic Use

Nucleic acids are readily degraded by various nucleases in vivo; 
therefore, high biostability is required for nucleic acid drugs. To 
evade enzymatic degradation, majority of nucleic acids currently 
in clinical trials are S-oligos,4 which substitute phosphorothio-
ates for phosphates in the backbone structure. However, recently 
2',4'-BNA/LNA has come to the fore as a promising candidate 
for therapeutic use owing to its high affinity and specificity to 
DNA/RNA targets as well as its high nuclease resistance. For 
example, a 12-mer modified oligodeoxynucleotide (ODN), in 
which six residues are replaced with 2',4'-BNA/LNA, binds to 
target RNA much more tightly than the corresponding natural 
ODN, in addition to its markedly improved biostability.2 Since 
the invention of 2',4'-BNA/LNA, various B/L nucleoside analogs 
have been developed (Fig. 2), and their performances have been 
analyzed as new drug candidates. Among those, 2',4'-BNACOC, 
2',4'-BNANC, and 2',4'-BNANC(Me) were found to exhibit further 
improved nuclease resistance while still retaining binding affini-
ties to single-stranded RNA and/or double-stranded DNA as a 
target.28-31

The first model of BNAs, i.e., 2',4'-BNA/LNA has already 
reached clinical trials. Santaris Pharma A/S in Demark has 
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lowers blood LDL-C levels because of the inhibition of ApoB 
synthesis in liver. Interestingly, in vivo beneficial effects of SPC 
4955 were observed to be superior to those of conventional anti-
sense nucleic acids, which are several to 10 residues longer in 
length (18–22-mers) because of the excellent hybridization prop-
erties of 2',4'-BNA/LNA.34

Advanced types of BNAs are also developed and being studied 
for medicinal and/or some other applications. For example, ben-
zylidene acetal type BNAs (BA-BNAs) with 2',4'-bridged struc-
tures that cleaved upon exposure to appropriate external stimuli, 
i.e., light, acid and reductant, were designed and synthesized.35,36 
Cleavage of the bridge between 2'-oxygene and 4'-carbon removed 
conformational restrictions on the sugar moiety and changed the 
hybridizing ability and enzymatic stability of the ODNs contain-
ing BA-BNAs. It was well known that replacement of 2'-oxygen 
by the other heteroatoms showed little influence on the bind-
ing properties of 2',4'-BNA/LNA.37-40 Selenomethylene locked 
nucleic acid (SeLNA), in which 2'-oxygen is replaced by sele-
nium, also showed excellent hybridization affinity, while its oxi-
dized form, selenoxide-bridged nucleic acid (SeOLNA), revealed 
lower binding affinity compared with SeLNA. Thus, SeLNA 
enables reversible hybridization to complementary ssDNA or 
ssRNA strands in response to redox changes.41

Hydroxamate-bridged nucleic acid (HxNA) possesses a six-
membered perhydro-1,2-oxazin-3-one ring, which is also the 
2',4'-BNA/LNA analog. The HxNA-modified ODNs showed 
selectively high affinity toward ssRNA along with superior 
nuclease resistance. It is of interest that exposure of HxNA-
modified ODNs to 3'-exonuclease resulted in gradual opening 
of the bridge, which stopped further digestion of the ODNs.42 
Amido-bridged nucleic acid (AmNA) has a carbonyl function-
ality at the 2',4'-bridged structure just like HxNA. Potent and 
RNA selective hybridizing ability and excellent biostabilities of 
AmNA-modified ODNs were observed. In addition, the in vitro 
antisense potencies of AmNA-modified ODNs was tested to 
reveal improved potencies of AmNAs relative to 2',4'-BNA/LNA 
counterparts.43 2',4'-Constrained 2'-O-methoxyethyl (cMOE) 
and 2'-O-ethyl (cEt) nucleic acid derivatives were developed by 
ISIS Pharmaceuticals. These derivatives have a methoxymethyl 
or methyl substituent at the bridged structure of 2',4'-BNA/LNA 
and showed higher nuclease resistance without any decrease in 
binding affinity.44,45

Thus, these examples demonstrate that BNA-containing oli-
gonucleotides can adequately satisfy the criteria required for use 
as medicines and strongly encourage us to develop therapeutic 
BNA aptamers.

2',4'-BNA/LNA Aptamers Created  
by Post-SELEX Modification

The performance of SELEX-selected aptamers can be improved 
by post-SELEX modification. A typical, successful example is the 
first aptamer drug i.e., pegaptanib, which is used for age-related 
macular degeneration (AMD) therapy.46 The precursory form of 
pegaptanib was recovered from a modified RNA library contain-
ing 2'-fluoropyrimidine nucleotides (U, C) by SELEX, and then 

developed SPC 3649 (miravirsen) and SPC 4955 that are being 
tested in phase II and I clinical studies, respectively.32,33 SPC 3649 
is a candidate therapeutic drug for hepatitis C; it is a microRNA 
and targets miR-122, which is closely associated with hepatitis 
C virus (HCV) replication. It was first observed to lower blood 
low density lipoprotein cholesterol (LDL-C) levels. However, it 
was recently observed to greatly reduce HCV levels in the liver 
and blood using drug dosage tests in chimpanzees with chronic 
hepatitis C infection. The preclinical test results of 2',4'-BNA/
LNA were quite favorable; its beneficial effects can be maintained 
for several months in the case with the longest duration, without 
any remarkable side effects. Miravirsen is of considerable interest 
not only because the current hepatitis C drugs, such as inter-
feron α and Ribavirin, are inadequate in terms of efficacy but also 
because it has a different mechanism of action.

Meanwhile, SPC 4955 is a potential antisense nucleic acid 
drug for hypercholesterolemia therapy. It targets the mRNA of 
apolipoprotein B (ApoB), a major component of LDL-C, and 

Figure 1. Chemical structure of DNA, RNA, and XNAs. The six XNAs can 
be transcribed and reverse-transcribed using polymerase variants.

Figure 2. Examples of 2',4'-BNA/LNA analogs that have been developed 
to date.
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Figure 3. Examples of 2',4'-BNA/LNA aptamers created by post-SELEX modification. RNA-based 2',4'-BNA/LNA aptamer specific for TN-C (A) and DNA-
based 2',4'-BNA/LNA aptamer specific for B cells (B).
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Figure 4. Procedure for standard SELEX based on the principal of affin-
ity chromatography (A), and that for CE-SELEX using NECEEM employed 
for 2',4'-BNA/LNA aptamer selection (B).

Figure 5. Schematic illustrations of SELEX experiments using (A) library A, (B) library B, (C) library C, and (D) library D, respectively. The primer P1fb 
contains six B/L nucleotides (A, G, C, and T), and dUmdTP is a 5'-triphosphate analog of the C5-modified thymidine bearing N6-ethyladenine (t).

all natural purine nucleotides (A, G) except for only two residues 
in the strand were successfully replaced with the correspond-
ing 2'-methoxy purine nucleotides by post-SELEX modifica-
tion. However, to date, the only known method for determining 
which nucleotides are suitable for replacement is by trial and 

error, i.e., by preparing variants and analyzing their respective 
binding activities.

Successful examples of 2',4'-BNA/LNA aptamers by post-
SELEX modification have been reported.10-25 Schmidt et al. devel-
oped an LNA aptamer, TTA1, specific for human tenascin-C 
(TN-C).11 The original form TN-9 was selected from a 2'-fluoro-
pyrimidine RNA library (Fig. 3A). The TN-9 71-mer was trun-
cated by removing 16 nucleotides from the 3'-end, which were 
selected on the basis of the predicted secondary structure.47 The 
resulting 55-mer TN-9.4 could form a three-way junction struc-
ture. A further deletion of TN-9.4 replaced 17 nucleotides from 
the 5'-end at positions 10–26 with a single spacer (CH

2
CH

2
O)

6
 

to produce the 39-mer TN-9.6. To enhance aptamer biostability, 
14 of the 19 purine nucleotides were successfully replaced with 
2'-deoxy-2'-OMe nucleotides through structure–activity rela-
tionship (SAR) studies. However, it was found that four guano-
sines at positions 9, 11, 14, and 17 should be retained as the 2'-ribo 
form to maintain high affinity with the TN-C target. The com-
plete structure of TTA1 comprised a thymidine cap at the 3'-end 
to prevent digestion by exonucleases; a mercapto-acetyl-glyci-
nyl-glycine (MAG2) chelate conjugated through a hexyl-amino 
linker at the 5'-end for application in tumor radioimaging; and 
the abovementioned 39-mer oligonucleotide. Full replacement 
with the corresponding B/L nucleotides in the stem I moiety 
(positions 1–5 and 33–37) produced TTA1.2, which was found 
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TD05.17 aptamers with appropriate lengths of a polyethylene 
glycol linker exhibited increased conformational stability and 
nuclease resistance and high avidity for membrane-associated 
mIgM but not for soluble IgM.

Thus, post-SELEX modification has been successful, but it 
still requires considerable time and effort, because binding affini-
ties could be markedly decreased or eliminated depending on the 
position of the replacement. Hence, intense interest has focused 
on the development of enzymatic BNA syntheses to apply BNA 
to SELEX methods.

Enzymatic Syntheses of BNAs

Enzymatic BNA syntheses have been reported in the literature 
since the middle of the last decade.48-65 Veedu et al. first tested 
B/L nucleotide incorporation using Phusion High Fidelity DNA 
polymerase, 9°Nm DNA polymerase, and Pfu DNA polymerase, 
and observed that the first and second of these three polymerases 

to exhibit superior stability in human plasma and target binding 
affinity (t

1/2
 = 53 h, EC

50
 = 2.0 nM) compared with TTA1 (t

1/2
 

= 42 h, EC
50

 = 5.8 nM). In contrast, replacement with 2'-OMe 
nucleotides at the same positions, which yielded TTA1.1, resulted 
in a more than 2-fold decrease in binding affinity, although sta-
bility was substantially improved (t

1/2
 = 49 h, EC

50
 = 13.7 nM). 

In addition to the stem I modification, replacement with B/L 
nucleotides in stems II or III produced a loss of binding activity, 
although extended plasma lifetimes were observed (t

1/2
 = 69 h and 

72 h) for the respective TTA 1.3 and TTA 1.4 aptamers.
B/L nucleotides are partially compatible with those in DNA 

aptamers (Fig. 3B). Mallikaratchy et al. created a B/L-nucleotide-
containing multivalent DNA aptamer specific to B-cells by engi-
neering a 45-mer DNA aptamer, TD05, which specifically binds 
to human membrane immunoglobulin M (mIgM) as a B-cell 
receptor.23 First, TD05, which was predicted to form a hair-
pin (stem-loop) structure, was truncated to produce a 37-mer, 
TD05.1, by removing several residues from the 3'- and 5'-stem 
regions. The four pyrimidine nucleotides at the 3'-end of TD05.1 
were successfully replaced with the corresponding B/L nucleo-
tides to produce TD05.17. It exhibited enhanced B-cell binding 
affinity, which was approximately 8.3- and 1.2-fold greater than 
that of TD05 and TD05.1, respectively. In contrast, replace-
ment with B/L nucleotides in other regions of TD05.1 pro-
duced aptamers with reduced activities. Trimeric and tetrameric 

Figure 6. The schematic illustration of library E selection. The primer 
P1fb’ contains six B/L nucleotides (A, G, 5-methyl C, and T). The 8-mer 
tail (AT8) was attached for separation of single-stranded BNA/LNA 
library.

Figure 7. Process of active species enrichment in selection rounds. 
Capillary electrograms for (A) library A, (B) library B, (C) library C, and 
(D) library D of each round with human thrombin (upper graphics). All 
electrograms recorded fluorescent intensity of 5'-labeled 6-FAM vs. 
migration time. Saturation curves of library enrichment for TBA acquisi-
tion (lower graphics).
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DNA-based 2',4'-BNA/LNA strands, DNA-based 2',4'-BNA/
LNA strands from RNA templates, and DNA strands from 
RNA-based 2',4'-BNA/LNA templates have been successfully 
obtained.53,61 However, these interesting and potentially useful 
findings have yet to be exploited for in vitro selection of BNA 
aptamers; this may be because direct PCR amplification of BNA 
is not absolutely essential for BNA aptamer selection, and RNA-
based BNA oligomers are limited because of biostability as well as 
by a limited variety of available RNA polymerases.

In applying BNA libraries to SELEX methods, yield and fidel-
ity in the polymerase reaction step of BNA syntheses are of high 
importance. A clever approach is to select desired polymerases 
from random libraries.84,85 This approach has been successfully 
implemented and was published in Science in 2012, and a variant 
of Tgo DNA polymerase derived from Thermococcus gorgonarius, 
PolC7, was created.26 Another way is to design polymerase vari-
ants and assess their catalytic abilities one by one;56 we discovered 
several KOD variants suitable for BNA syntheses in our collabo-
ration with Toyobo Co., Ltd. These polymerases are promising 
candidates for applications in BNA aptamer selection and will be 
used as parent enzymes for further improvements.

2',4'-BNA/LNA Aptamers Created by SELEX Selection

During SELEX rounds, low yield in enzymatic syntheses could 
cause biased cutoff of so-called difficult sequences containing 
B/L nucleotide-dense and/or GC-rich alignments even if they 
are highly active for target binding, while low fidelity of poly-
merase could interfere with reproduction of selected sequences. 
Performances of polymerases should be further improved. 
However, we thought that it might be possible to implement 
2',4'-BNA/LNA aptamer selection using currently available engi-
neered polymerases, if appropriate selection methods were chosen 
and were able to be sophisticated. We assumed that methodolo-
gies that require only a single selection round for enrichment such 
as Mono-LEX86 and non-SELEX selection87 should be promising 
because of the minimized number of times of enzymatic oligonu-
cleotide synthesis in the entire process until aptamer acquisition.

To this end, we have first challenged to obtain 2',4'-BNA/
LNA aptamers specific for human α-thrombin using non-SELEX 
selection, but unfortunately could not attain sufficient enrich-
ment of these aptamers (unpublished work). Then, we attempted 
the CE-SELEX method88-91 as an original model for non-SELEX 
selection. Unlike many other alternative SELEX techniques 
based on the principal of affinity chromatography involving 
molecular interactions at the solid–liquid interface (Fig. 4A), 
CE-SELEX can separate active species form non-active species in 
the liquid phase by non-equilibrium capillary electrophoresis of 
equilibrium mixtures (NECEEM)92 (Fig. 4B). Furthermore, in 
NECEEM, electro-osmotic flow (EOF), which occurs from the 
anode to the cathode, can carry the target–aptamer complexes 
prior to unbound free oligonucleotides. Hence, CE-SELEX may 
be one of the best methods to enable efficient aptamer enrich-
ment because it maximally excludes contamination of non-active 
species; in the typical SELEX methods, species non-specifically 
bound to the solid support cannot be completely washed out 

Figure 8. Process of active species enrichment in selection rounds. (A) 
Capillary electrograms for library E of each round with human thrombin 
(left graphic). All electrograms recorded fluorescent intensity of 5'-la-
beled 6-FAM vs. migration time. Saturation curve of library enrichment 
for TBA acquisition (right graphic). (B) Enlarged and overlapped view of 
each round of capillary electrograms with or without human thrombin.

could accept B/L nucleoside 5'-triphosphates as substrates and 
catalyze primer extension reactions to yield DNA-based 2',4'-
BNA/LNA strands.49,50 Subsequently, several other polymerases, 
such as Taq DNA polymerase, Large (Klenow) fragments, T4 
DNA polymerase, Pfx DNA polymerase, Speed STAR HS DNA 
polymerase, T7 RNA polymerase, E. coli RNA polymerase, AMV 
reverse transcriptase, and mutant T7 R&DNA polymerase have 
been similarly assessed.51 From these results, they concluded that 
Phusion High Fidelity DNA polymerase was the only enzyme that 
could efficiently incorporate B/L nucleotides. In 2008, we first 
demonstrated that KOD Dash DNA polymerase, derived from 
hyperthermophilic archaeon pyrococcus kodakaraensis (KOD), 
was superior to Phusion High Fidelity DNA polymerase52 because 
of its reduced 3',5' exonuclease activity and applicable not only 
for the synthesis of 2',4'-BNA/LNA but also for other types of 
BNA, i.e., 2',4'-BNACOC and 2',4'-BNANC. Previously, we dem-
onstrated the usefulness of KOD DNA polymerases in enzymatic 
syntheses of base-modified DNAs and investigated their applica-
tion in SELEX methods since 2001.66-78 Therefore, we readily 
noticed that KOD-related DNA polymerases are also applicable 
DNA synthesis involving modified sugars. This knowledge is 
now being widely accepted among researchers engaged in rel-
evant studies.54,58-60,62,65,79-83 To date, enzymatic syntheses of 
various modified DNAs using KOD-related DNA polymerases 
have been reported. A DNA polymerase named KOD XL is com-
monly used (which is essentially the same as KOD Dash); KOD 
XL comprises a mixture of approximately 2:98 wild-type KOD 
DNA polymerase and KOD(exo-) DNA polymerase. In the exo-
knockout form, 3',5' exonuclease activity is heavily reduced or 
absent.

Polymerase chain reaction (PCR) and reverse-transcription 
involving B/L nucleotide-containing oligonucleotide have been 
examined. Under certain reaction conditions, PCR-amplified 
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Table 1. Sequences and affinities of representative TBAs recovered from libraries A−E

Aptamer * Sequence† Kd (nM)‡

Library A: TCGCCTTGCC GGATCGCAGA (random region) TGGTCCGTGA GCCTGACACC

A#1,2,3,4,6 GAATCAGGTT CACGTTGGTT CGGTTGGTAT 3.1

A#5,14 TTGTCAGGTG GCTTCGTGGT TCGGTTGGTG 1.9

A#8,9,11,12,13,16 TCGTGGCAGG ATCCGTTGGT TTTGGTTGGG 7.9

Library B: TCGCCTTGCC GGATCGCAGA (random region) TGGTCCGTGA GCCTGACACC

B#1,8 TCGTGGCAGG ATCCGTTGGT TTTGGTTGGG 3.7

B#2,15 GGGCACTTGG CTGGTTGGTG GGTTTTGCCC 5.0

B#3,5,6,10,12,14 GAATCAGGTT CACGTTGGTT CGGTTGGTAT 3.3

B#4 GTGTGGTGGG TTGGCTCTGG GTGACCTCTG 1.9

B#11 AGTGGCCGGC TCCGCGTGGG GGGTTGGGTT 2.1

Library C: TCGCCTTGCC GGATCGCAGA(random region)tGGtCCGtGA GCCtGACACC

C#1 AAGCAGCtCG CGtACGAAtt tttGttGGtA 0.57

C#2,11 GtGGGGAtCt CtGtttAtCC ACttCAGtGC 2.6

C#4 GGGAGGCACG CGAtGCGAGt ttACCCtACG 2.9

C#5,14,20 ttCGGGGGCG CtCCCCtCAt GtttACCCtAG 10

C#7 GGGAGGGCAG CGGCAGAttG GCGGttAGGC 34

C#8 CttGttAtAC GGtCtCttGG CCCGGttGGC 4.3

C#9 tGGCCCCCCG tttGCGGttt tttCGtAGGC 7.5

C#10 ttCtAGGGAA AGGCtCGCtt tttGttGGtA 1.7

Library D: TCGCCTTGCC GGATCGCAGA (random region) tGGtCCGtGA GCCtGACACC

D#1,10 ttGGtCAAAG GtCCGACGAG ttttGCtAGC 2.3

D#2,3 GCCGtGAGGA CGCGCttGtt GGGGGGttGt 4.0

D#6,9 ttGGtCGAAG GttCCGGGGt CCttAGtGGt 0.26

D#7 tGCGGAGtGG CCAAtCACtt tttGttGGCA 0.79

D#11 ACGGGCGtGG CttCAtAAtt tttGttGGtA 0.50

D#12 ttAGtCGAAG GttCCtGGCC ACttAtAtCG 0.093

D#13 CGGCCGAGGt GGCCAACGtt tttGttGGtA 0.91

Library E: TCGCCTTGCC GGATCGCAGA (random region) TGGTCCGTGA GCCTGACACC ATTTTTTT

E#1,8,11,12,13,30,35,37 GGAGCAAGAT GTCACGGTCC GCATGCAGAG NB

E#3,18 CTCTTGACAG GACTCATGCA CGGGGGGGCT 27

E#6,20,25,33 AGTGGCTGGC TCCGCGTGGG GGGTTGGGTT NB

E#14,38 GAGGCAATGT GTGGGTACCG CATTACCCAGT NB

E#17 CTCTTAACAG GACAAGTGAA ACAAACCCGC 23

E#26 CACACAGGTT TGCGGCCGCT TCTGGGCAGC NB

E#23,28,32 CTCTTGACAG GACACATGCA CGCGGGGGCT 20

E#40 CTCTTAACAG GACTCATGCA CGGGGGGGCT 18

*The name of each aptamer indicates the type of library used and the clone number. †Sequences are aligned in the 5' to 3' direction. The B/L nucleo-
tides with adenine, guanine, cytosine, 5-methylcytosine, and thymine are underlined (A, G, C, C, and T). The C5-modified thymidine is shown in bold 
letters (t). ‡Kd values were determined by non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM). NB, no binding.

while maintaining the desirable specific binding, resulting in 
inevitable contamination of non-active species in the elution of 
active species.

Accordingly, we conducted in vitro selection of aptamers 
specific for human α-thrombin from four different libraries 
A–D93 prior to library E selection (Figs. 5 and 6).94 Here, A is 
a common DNA library, whereas B, D, and E are DNA-based 

libraries containing B/L nucleotides at intervals of two residues 
in the forward primer region. Libraries C and D contain the 
C5-modified thymidine, i.e., (E)-5-(2-{N-[2-(N6-adeninyl)
ethyl]}carbamylvinyl)-2'-deoxyuridine (t) instead of the natural 
thymidines (Ts) in the random region and the reverse primer-
binding region at the 3' end. Library E contains B/L thymidines 
(Ts) instead of Ts in the non-primer region, except for an 8-mer 

©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



46	 Artificial DNA: PNA & XNA	V olume 4 Issue 2

References
1.	 Obika S, Nanbu D, Hari Y, Morio K, In Y, Ishida T, et 

al. Synthesis of 2'-O,4'-C-methyleneuridine and -cyti-
dine. Novel bicyclic nucleosides having a fixed C3'-endo 
sugar puckering. Tetrahedron Lett 1997; 38:8735-8; 
http://dx.doi.org/10.1016/S0040-4039(97)10322-7

2.	 Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, 
et al. Stability and structural features of the duplexes 
containing nucleoside analogs with a fixed N-type 
conformation, 2'-O,4'-C-methyleneribonucleosides. 
Tetrahedron Lett 1998; 39:5401-4; http://dx.doi.
org/10.1016/S0040-4039(98)01084-3

3.	 Singh SK, Koshkin AA, Wengel J, Nielsen P. LNA 
(locked nucleic acids): synthesis and high-affinity nucle-
ic acid recognition. Chem Commun (Camb) 1998; 
4:455-6; http://dx.doi.org/10.1039/a708608c

Conclusions and Future Prospects

Using CE-SELEX, we succeeded in in vitro selection of aptam-
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